
Mutation Operators for Specifications

Paul E. Black
National Institute of

Standards and Technology
Gaithersburg, MD 20899

paul.black@nist.gov

Vadim Okun Yaacov Yesha
University of Maryland

Baltimore County
Baltimore, MD 21250�

vokun1,yayesha � @cs.umbc.edu

Abstract

Testing has a vital support role in the software engineer-
ing process, but developing tests often takes significant re-
sources. A formal specification is a repository of knowl-
edge about a system, and a recent method uses such speci-
fications to automatically generate complete test suites via
mutation analysis.

We define an extensive set of mutation operators for use
with this method. We report the results of our theoretical
and experimental investigation of the relationships between
the classes of faults detected by the various operators. Fi-
nally, we recommend sets of mutation operators which yield
good test coverage at a reduced cost compared to using all
proposed operators.

1 Introduction

A formal specification is a repository of knowledge
about a system. In particular, a specification provides
valuable information for testing programs. For instance,
specification-based testing may detect a missing path er-
ror [12], that is, a situation when an implementation ne-
glects an aspect of a problem, and a section of code is alto-
gether absent. Since there is no evidence in the code itself
for the omission, such errors are very hard to find by analyz-
ing the code alone. Further, code-based testing is not pos-
sible for some systems because testers do not have access
to the source code. Additionally, generating tests from a
specification can proceed independently of program devel-
opment, and the created tests apply to all implementations
of the specification, e.g., ports.

Ammann and Black described a novel method using a
combination of model checking and mutation analysis to
automatically produce tests from formal specifications [2]
and measure test coverage [1]. The test cases considered
in the method constitute a complete test suite, that is, all
test cases include both inputs and expected results. Model

checking is a formal technique for verifying that tempo-
ral logic expressions are consistent with all executions of
a state machine. Mutation analysis [9] uses mutation op-
erators to introduce small changes, or mutations, into the
specification, producing mutant specifications. Better test
sets are those which reveal more mutants.

Ammann and Black defined a few mutation operators
for formal specifications, but did not consider their relative
merits. In this paper, we describe a larger set of mutation
operators, including some new ones. We compare, both
theoretically and empirically, the effectiveness of the op-
erators and the number of mutations they produce. For the
theoretical comparison, we extend Kuhn’s analysis of fault
classes [14] and tie it to mutation operators.

1.1 Software Testing and Model Checking

Model checking is a formal verification technique based
on state exploration. A model checking specification con-
sists of two parts. One part is a state machine defined in
terms of variables, initial values for the variables, environ-
mental assumptions, and a description of the conditions un-
der which variables may change value. The other part is
temporal logic expressions over states and execution paths.
Conceptually, a model checker visits all reachable states and
verifies that the temporal logic expressions are satisfied over
all paths. When an expression is not satisfied, the model
checker generates a counterexample in the form of a trace
or sequence of states, if possible.

Although model checking began as a method for veri-
fying hardware designs, there is growing evidence that it
can be applied to specifications for large software systems,
such as TCAS II [7]. In addition to verifying properties of
software, model checking is being applied to test generation
and test coverage evaluation [2, 6, 10, 11].

In both uses, one begins with selection of a test crite-
rion [12], that is, a decision about what properties of a
specification must be exercised to constitute a thorough test.
Some specification-based test criteria are conjunctive com-

plementary closure partitions [6], branch coverage [11], and
mutation adequacy [1].

The chosen test criterion is applied to the specification to
derive test requirements, i.e., a set of individual properties
to be tested. To use a model checker, these requirements are
represented as temporal logic formulas. To evaluate cover-
age of a test set, each test is turned into an execution se-
quence, and the model checker determines which require-
ments are satisfied by the execution. See [1] for details.

To generate tests, the test criterion is applied to ulti-
mately yield negative requirements, that is, requirements
which are considered satisfied if they are inconsistent with
the state machine. When the model checker finds a require-
ment to be inconsistent, it produces a counterexample if
possible. The counterexamples contain both stimulus and
expected values, so they may be automatically converted to
complete test cases.

Specification-Based Mutation Adequacy

Mutation adequacy is a test criterion which naturally yields
negative requirements. First, a set of temporal logic expres-
sions restating, or reflecting, the state machine’s transition
relation is derived mechanically [1]. This set, together with
pre-existing expressions, if any, is consistent with the state
machine and comprises the part of the specification to be
mutated.

A mutant specification is produced by applying a single
mutation operator once to the temporal logic portion of the
specification. Applying operators repeatedly yields a set of
mutants. The mutants represent negative requirements, so
they can be used for both test generation and evaluation.

The SMV Model Checker

We chose a popular model checker, SMV [15]. It uses Com-
putation Tree Logic (CTL) [8], which is a branching-time
temporal logic extending propositional logic with temporal
operators.

Here is a short SMV example. “Request” is an input vari-
able, and “state” is a scalar with possible values “ready” and
“busy.” The initial value of state is “ready.” The next state
is “busy” if the state is “ready” and there is a request. Oth-
erwise the next state is “ready” or “busy” nondeterministi-
cally. The SPEC clause is a CTL formula which states that
whenever there is a request, state will eventually become
“busy.”

MODULE main
VAR

request : boolean;
state : {ready, busy};

ASSIGN
init(state) := ready;

next(state) := case
state = ready & request : busy;
1 : {ready, busy};

esac;
SPEC AG (request -> AF state = busy)

The choice of model checker forces the specification to
be in the language which the model checker accepts. Some
might object that SMV’s state machine description is at too
low a level for practitioners to use, and we agree. A practi-
cal system must extract state machines from higher level de-
scriptions such as SCR specifications [3], MATLAB state-
flows [4], or UML state diagrams.

1.2 Hierarchy of Fault Classes

Mutation operators are related to the set of fault classes
which Kuhn analyzed [14]. The set includes:

� Variable Reference Fault (VRF) - replace a Boolean
variable � by another variable � , ���� � .

� Variable Negation Fault (VNF) - replace a Boolean
variable � by �� .

� Expression Negation Fault (ENF) - replace a Boolean
expression � by �� .

� Missing Condition Fault (MCF) - a failure to check
preconditions.

Earlier Kuhn developed a technique [13] based on pred-
icate difference for analyzing effects of changes in formal
specifications. Applying this technique, he derived a hier-
archy of fault classes used in specification-based software
testing.

The detection conditions for a predicate � are the con-
ditions under which a change to � affects the value of the
predicate � . A test detects an error if and only if a faulty
predicate �
	 evaluates to a different value than the correct
predicate � , e.g., ���
�
	 .

Let ���� be a predicate � with all free occurrences of vari-
able � replaced by expression � . Let � be a fault in which �
is replaced by � . The fault � is detected under the condition
���
� �� .

If � is a specification in disjunctive normal form (DNF),
the conditions for detecting VRF, VNF, and ENF are:

� ������� � �������� , where � and � are distinct variables
in � , and � is substituted for � .

� � ����� � ���
� � � , where � is a variable in � .

� ��!"�#� � �$����% % , where & is an expression in � .

The relationships between detection conditions are:

� If the variable replaced in �"�"��� is the same variable
negated in ���"��� , then ������� � �����#� .

� If all expressions containing the variable negated in
� ���#� are negated in � !���� , then � ����� � � !���� .

Kuhn concludes that any test that detects a VRF for a
variable in a predicate also detects a VNF for the same vari-
able, and any test that detects a VNF for a variable also
detects an ENF for the expression in which the variable oc-
curs.

We use Kuhn’s approaches and theoretical conclusions to
analyze mutation operators. Section 2 defines mutation op-
erators for specifications together with their respective fault
classes. Section 3 investigates the relationships between de-
tection conditions for several fault classes analytically and
compares the effectiveness of the mutation operators exper-
imentally. We present our conclusions about the relative
merit of mutation operators in Section 4.

2 Specification Mutation Operators

We use the following overall guiding principles [17] to
formulate and implement our mutation operators:

1. Mutation categories should model potential faults.

2. Only simple, first order mutants should be generated.

3. Only syntactically correct mutants should be gener-
ated.

4. The user should have control over the selection of
which mutation categories to apply at any one time.

The first principle means it is important to recognize dif-
ferent types of faults. While presenting mutation operators,
we state which specification fault classes are modeled by
the operators. In fact, each mutation operator is designed to
uncover faults belonging to the corresponding fault class.

Since we are interested in relating our work to the theo-
retical results obtained in [14], we define the mutation oper-
ators so that their respective fault classes closely correspond
to those definitions. For example, consider the following
fault. The constant ��� is replaced with constant ��� in the ex-
pression � � � � , where � is a variable. If Boolean variables� � and � � represent � � � � and � � � � , respectively, then
this is a variable reference fault (VRF). To account for this
and similar cases, we need the definitions below.

2.1 Definitions

We define, similarly to [16], a simple expression as one
of the following, possibly negated:

� A Boolean variable.

� An expression �	��
 ����
 � �	��
 ����� , where �	��
 ����
 and
�	��
 ����� are either a variable of type scalar or a con-
stant, e.g., ��� � � � ����� � � , where ��� � � � is a variable
and ��� � � is a constant from the domain of ��� � � � .

� A simple relational expression: �	��
 ����
�� � ��� � �	���
�	��
 ����� , where �	��
 ����
 and �	��
 ����� are either a vari-
able of type integer or a constant, � � ��� � �	��� is one of������� � � �� ��� , or .

A compound expression consists of at least one binary
Boolean operator (including conjunction, disjunction) con-
necting two or more expressions, and possibly negation op-
erators and parentheses.

We consider two kinds of operands in CTL: state vari-
ables and symbolic constants. State variables may be of
Boolean, scalar or integer type. Value of a scalar variable
is drawn from a finite set of constants. An integer variable
takes value from a range. An SMV specification may also
contain symbolic constants defined by the user to represent
integers.

We define !#"%$�&�!�� to be the set of unique traces gener-
ated by mutation operator ' ��(*) .

Additionally, the following notation is used throughout
the paper:

�,+ and - represent disjunction and conjunction respec-
tively in the formulas. However, when presenting
SMV specifications we use instead . and / , since they
are a part of SMV syntax.

� � represents implication, � represents exclusive or.

� 1 and 0 are used to denote “true” and “false,” respec-
tively.

2.2 Categories of Mutation Operators

Each fault class has a corresponding mutation operator.
Applying a mutation operator gives rise to a fault in that
class. For example, instances of the missing condition fault
(MCF) class can be generated by a missing condition oper-
ator (MCO). Note that the abbreviation of the mutation op-
erator ends in O, and the abbreviation of the corresponding
fault class ends in F. Below we define mutation operators
for common fault classes.

Although mutation operators are independent of any par-
ticular specification notation, here we present them for CTL
specifications. Illustrative mutants for each operator are
shown in Table 1.

� Operand Replacement Operator (ORO).

Replace an operand, that is, a variable or constant, by
another syntactically legal operand.

Do not replace the operand if it results in a constant (��

� � ��� � �	��� ���) or reflexive (� � � ��� � �	��� �) expression,
since an equivalent mutant is produced by applying the
Stuck-At operator described below. Do not replace a
number with another number, since this may result in
too many mutants.

� Simple Expression Negation Operator (SNO).

Replace a simple expression by its negation.

� Expression Negation Operator (ENO).

Replace an expression by its negation. Temporal ex-
pressions, such as AG and EF, are not negated since
SMV does not produce counterexamples from such
mutants.

� Logical Operator Replacement (LRO).

Replace a logical operator (/ � . � �) by another logical
operator.

� Relational Operator Replacement (RRO).

Replace a relational operator (����������� � � � ��) by
any other relational operator, except its opposite. For
example, do not replace � with its opposite, , be-
cause that is the same as negating the expression. Only
replace � or �� when applied to an integer expressions.

� Missing Condition Operator (MCO).

Delete conditions (only simple expressions) from con-
junctions, disjunctions, and implications.

� Stuck-At Operator (STO).

This consists of two operators: stuck-at-0, replace a
simple expression with 0, and stuck-at-1, replace a
simple expression with 1.

� Associative Shift Operator (ASO).

Change the association between variables, e.g., replace
� � � ��/ � � / � � with

� � � � ���	/ � ��/ � � . We do not
replace the formula with

� � � � � / � ���	/ � � . This re-
duces the number of mutants generated by ASO.

Table 1 contains mutants generated from three formulas:
the CTL formula presented in Section 1.1, the formula “AG
(x / y � z)” (by ASO), and the formula “AG (WaterPres� 100)” (by RRO).

If the number of atoms (variables and constants) in a
specification is � and the number of value references is) ,
ORO results in ' � ���)�� mutants, whereas SNO, LRO,
MCO, STO, ASO and RRO result in ' �)�� mutants.

Operator Example Mutants
ORO AG (request � AF state = ready)
SNO AG (!request � AF state = busy)

AG (request � AF (!state = busy))
ENO AG (!(request � AF state = busy))
LRO AG (request / AF state = busy)

AG (request . AF state = busy)
MCO AG AF state = busy
STA AG (0 � AF state = busy)

AG (1 � AF state = busy)
AG (request � AF 0)
AG (request � AF 1)

ASO AG (x / (y � z))
RRO AG (WaterPres � � 100)

AG (WaterPres � 100)
AG (WaterPres � 100)
AG (WaterPres � � 100)

Table 1. Mutation Operators and their Illustra-
tive Mutants.

2.3 Correspondence to Kuhn’s Fault Classes

Our mutation operators generally do not correspond ex-
actly to Kuhn’s fault classes [14]. Consider a fault when
expression � � � is replaced with � � � , where � is a
variable and � is a constant. If we have boolean variables
represent � � � and � � � , this is a variable reference fault
(VRF).

If we combine ORO and RRO into a single operator,
ORO 	 , this new operator generates a class of faults closely
matching VRF. We call its corresponding fault class ORF 	 .

For analysis, we define a mutation operator which gener-
ates a class of faults identical to VRF. This Simple Expres-
sion Replacement Operator (SRO) replaces a simple expres-
sion by every other syntactically valid simple expression of
atoms in the model.

SRO sometimes generates higher order mutants, so by
Woodward’s principle [17], it should not be used for test
generation. Additionally, the operator produces a very large
number of mutants. Not surprisingly, SRO generates a set of
mutants which includes those of ORO 	 , thus !#" $"�%$�

�
!#"�� �%$.

3 Comparison of Mutation Operators

In this section we analyze the relationships between sev-
eral fault classes for restricted form of specifications, and
we study the mutation operators experimentally.

3.1 Theoretical Comparison of Fault Classes

Analysis of Faults in Formulas

For analysis, we only consider specifications with formu-
las in disjunctive normal form (DNF), i.e., � � � � ����� ��� +� � � � ����� ��� +������ +
	 � 	 � ����� 	�� , where ��
 � ��� � ����� � 	�� are sim-
ple expressions. Here and in the theorem proof below, -
is sometimes omitted, e.g., � � � � ����� � � is a shorthand for� � - � � - ����� - � � .

Let � be a simple expression in a formula � , and & be a
possibly compound expression in � . Here are the detection
conditions for several fault classes:

� � � ��� � � ����� � .

� � !���� � ������% % .

� ����� � � ������� - ����� � , where � ����� � � � ���� , ����� � �
���
���� .

� ��� ��� � � � ���� , where � is a simple expression in � ,
���� � .

The definitions of � � ��� and � � ��� are identical to the
definitions of � �"��� and � ����� in Section 1.2 except that
“simple expression” is substituted for “variable”. Simple
expression was defined to closely correspond to the Boolean
variable in [14]. The definition of � !���� comes from Sec-
tion 1.2. So under conditions in that section, � � ��� �
��!���� and ��� ��� � ��� ��� .

ORF and ORF 	 are not defined for expressions; there-
fore, we cannot strictly analyze their relationship to � � ��� .
However, since ORF and, especially, ORF 	 , are defined to
closely match VRF, we believe that ORO 	 detects SNF.

Theorem If the simple expression replaced by � or
 in
����� � is the same simple expression negated in � � ��� ,
then � ��� � � ��� ��� .

Proof.
As in [14], the theorem follows if � ������ � � ����� ��� and

� � ���� � � � ��� ��� .
The detection conditions for arbitrary stuck-at-0 and

simple expression negation faults are � � ���� � �$�
� ���� and
� � ��� ���

� ���
� ��� ��� .
For simplicity, let � � � � � � + � � � +������ + � � � � - ����� - � �	 � +

�	 � + ������+ �	�� � �
� � ���� �

� � � � � ����� � � + � � � � ����� � � +!����� +"	 � 	 � ����� 	 � � �� � + � � � � ����� � � +#����� +$	 � 	 � ����� 	 � � � � � � � � ����� � � �%� � -$� �� � � � � ����� � � � -&� .
� � ��� ���

� � � � � � ����� ����+ � � � � ����� ��� +!����� +"	 � 	 � ����� 	�� � �� �� � � � ����� ��� + � � � � ����� ��� +'����� +(� 	 � ����� 	�� � �� � � � � ����� ��� � �� � � � ����� ��� � -&� � � � � ����� ��� � -&� .
Since � � � � ����� ��� � � � ����� ��� , then � � � �� � � � � � � � .

Similarly, for a stuck-at-1 fault, since � � ���� � � � � ���� �� �� � � � ����� ��� �%-�� , then � � ���� � � � ��� ��� .
Therefore, � ��� � � � � ��� . Q.E.D.
Now consider MCF and STF. Dropping a simple expres-

sion � from a conjunction is the same as setting � �
 ,
which is a stuck-at-1 fault. Dropping � from a disjunction
is the same as setting � � � , a stuck-at-0 fault. Therefore,
����� � � �*)
+"� .

Test Generation from Actual Specifications

Actual specifications are generally not in DNF. The mutants
of a DNF representation are different from the mutants of
the original. One part of our current research is to determine
what effect, if any, this difference has on resulting tests.

To illustrate the difference, let � be a specification and � 	
be the DNF representation of � . Some first order mutants of
� cannot be generated from � 	 since they are higher order
mutants of � 	 , and some first order mutants which would be
generated from � 	 are actually higher order mutants of the
original � .

For example, if � � � � � , then � 	 � � � + �� � + �� �� .
Setting the first appearance of � to 0 in � 	 results in �� � +
�� �� � �� , which is not a first order mutant of the original
formula and is an unlikely error.

Consequently, we apply mutation operators to the unal-
tered specification, and the theoretical results do not strictly
apply.

Suppose OP1 and OP2 are mutation operators and F1
and F2 are their respective fault classes. Suppose also that
� � � � � � � . This suggests that OP1 detects F2, that is,
!#"%$�& � � ! " $ & � . However, the implication may be triv-
ially true because � � � is universally false or � � � is univer-
sally true. Consider the case where OP1 generates a consis-
tent mutant, e.g. , if the specification is SPEC AG (x . y),
then � � � + � , and
� ���� � � � + � � � �
 + � � � �� - �� .
� ��� �

� � � + � � � � �� + � � � �� .
Therefore, � ���� � � ��� � . However, the mutant generated

by setting � to 1 is always true and does not result in a test
case.

Similarly, OP1 may not generate a mutant. Suppose
an SMV specification contains only one variable, � , of
type Boolean, and one clause SPEC AG (x). SRO does
not generate any mutants, whereas SNO generates a mu-
tant with �� . This mutant is likely to produce a test case.
Even though � � ��� � ��� �#� , since !#" � �%$ is empty,
!#" � � $ �� ! " � �%$, and SRO does not detect SNF in this
case.

Since the same test case is usually derived from a num-
ber of mutant specifications, we hypothesize that the issues
mentioned in this section do not significantly affect the re-
sults for SMV specifications of considerable size. However,

SPEC Boo- Sca- Inte- Total
clauses leans lars gers vars

Cruise
Control 14 8 3 0 11
Safety

Injection 22 1 3 1 5
CPU
Stack 21 1 3 0 4

Table 2. Number of CTL Formulas and Vari-
ables in Sample Specifications.

it is important to experimentally support these theoretical
results.

3.2 Empirical Comparison of Mutation Opera-
tors

To empirically confirm these results, we developed an
extensible tool for generating mutations of SMV specifica-
tions, using the SMV parser. It allows us to selectively ap-
ply mutation operators. Resulting individual mutations may
be left in individual SMV files or combined into a single file
for faster model checking. The source code and documen-
tation are available from the authors.

We ran experiments on three SMV specifications to com-
pare the mutation operators in terms of the number of test
cases produced and the specification coverage. Table 2
shows the number of CTL formulas and the number of vari-
ables in each of the specifications. Here are some additional
details:

� Cruise Control [3]

Two of the scalar variables have the same domain:�
Activate, Deactivate, Resume � . The third has a do-

main of cardinality 5.

� Safety Injection [5]

Two scalar variables have the domain:
�
On, Off � . The

third has a domain of cardinality 3. The integer vari-
able takes values between 0 and 200, but it is only com-
pared with 2 different symbolic constants.

� CPU Stack

The scalars have domains with cardinality 3, 4, and 6,
respectively.

Empirical Evaluation of Mutation Operators

Table 3 gives the total number of mutants, the number of se-
mantically unique, inconsistent (U-I) mutants, and the num-
ber of unique test cases or traces generated by applying the
mutation operators to the sample specifications.

U - I Unique
Mutants Mutants Traces

Cruise Control 879 116 24
Safety Injection 730 86 21
CPU Stack 924 81 9

Table 3. Number of Mutants and Traces for
Specifications.

Operator Mutants CEs UTs Coverage
ORO 	 405 152 24 100%
ORO 405 152 24 100%
SNO 72 47 21 96.6%
ENO 130 105 21 96.6%
LRO 116 87 14 87.9%
RRO - - -
MCO 72 40 18 93.1%
STO 144 47 21 96.6%
ASO 12 8 4 62.9%

Table 4. Cruise control example results.

Operator Mutants CEs UTs Coverage
ORO 	 202 99 21 100%
ORO 130 63 17 94.2%
SNO 83 51 15 90.7%
ENO 144 104 15 90.7%
LRO 122 82 10 83.7%
RRO 72 36 10 50.0%
MCO 79 50 13 87.2%
STO 166 51 15 90.7%
ASO 17 17 5 47.7%

Table 5. Safety injection example results.

Operator Mutants CEs UTs Coverage
ORO 	 279 135 9 100%
ORO 279 135 9 100%
SNO 75 52 7 97.5%
ENO 129 100 7 97.5%
LRO 129 46 5 90.1%
RRO - - -
MCO 109 38 7 97.5%
STO 256 52 7 97.5%
ASO 22 20 4 85.2%

Table 6. CPU Stack example results.

We present details in Tables 4, 5, and 6. As in Table 3,
“Mutants” is the total number of mutants generated by each
operator, including consistent and duplicate mutants. Since
SNO mutants are a subset of ENO mutants, we do not in-
clude SNO mutants in the number of mutants in Table 3.
Next we give the number of counterexamples, “CEs,” found
in the SMV runs. “UTs” is the number of unique traces after
duplicate traces and prefixes are removed.

We use the specification-based coverage metric intro-
duced in [1]. We exclude all consistent mutants. We also
exclude all but one copy of inconsistent mutants which are
semantic duplicates of other mutants, e.g., those which al-
ways evaluate to the same result. Let

�
be the number of

U-I mutants generated by all operators for a given exam-
ple. We turn the unique traces from each operator into con-
strained finite state machines, then SMV finds which mu-
tants are killed. Let
 be the number of mutants killed. The
coverage is

�
� .

Results for RRO appear only for Safety Injection, since
it is the only example with relational operators.

Discussion

ORO 	 generates the largest number of mutants, but pro-
vides the same set of test cases as all the operators com-
bined. Consequently, it has 100% coverage.

SNO, ENO, and STO each provide second best coverage.
SNO, however, generates significantly fewer mutants.

MCO provides slightly less coverage while generating a
small number of mutants. As mentioned in [14], a common
implementation error is the failure to validate input data or
check preconditions. This is an MCF. Since MCO is de-
signed to detect MCF, its good performance should not be
surprising.

LRO generates a large number of mutants and provides
good coverage for each example. ASO has low coverage,
but generates very few mutants.

In these examples, we found the following relationships
between the sets of unique traces:

� !#"�� � $ � !#"%$��%$
� !#")
+�$ � !#" ��� $
� !#" � � $ � !#" ��� $
� !#" !�� $ � !#" � � $
These results agree with the analysis in Section 3.1. In

particular, they support the idea that ORO is sufficient to
detect faults in ORF, SNF, and ENF. This suggests that SNO
and ENO are not needed if ORO is used.

4 Conclusions

It is widely accepted that testing is a crucial, but some-
times overlooked, part of software engineering. Develop-
ing adequate test sets is often a labor-intensive and tedious
task. A recent method, combining mutation analysis and
model checkers, automatically generates complete test sets
from formal specifications. In this paper, we report that we
refined or invented several useful specification mutation op-
erators for this method and we compared these and other
operators.

We found that a combination of Operand Replacement
and Relational Operator Replacement mutation operators,
ORO 	 , has the most coverage of all the operators we con-
sidered, but generates a large number of mutants. The Sim-
ple Expression Negation Operator, SNO, has good cover-
age, and generates a small number of mutants. The Missing
Condition Operator (MCO) has similar coverage to and gen-
erates about the same number of mutants as SNO. However,
MCO may be preferred since it models missing predicates,
a common programming fault. The other mutation opera-
tors had poorer coverage or generated more mutants than
these three operators.

The theoretical analysis and experimental data are con-
sistent with each other, supporting our claim that these mu-
tation operators are practical for automatically generating
complete test sets from specifications.

References

[1] P. E. Ammann and P. E. Black. A specification-based cover-
age metric to evaluate test sets. In Proceedings of Fourth
IEEE International High-Assurance Systems Engineering
Symposium (HASE 99), pages 239–248. IEEE Computer So-
ciety, November 1999. Also NIST IR 6403.

[2] P. E. Ammann, P. E. Black, and W. Majurski. Using model
checking to generate tests from specifications. In Proceed-
ings of the Second IEEE International Conference on For-
mal Engineering Methods (ICFEM’98), pages 46–54. IEEE
Computer Society, Dec. 1998.

[3] J. M. Atlee and M. A. Buckley. A logic-model semantics
for SCR software requirements. In Proceedings of the 1996
International Symposium on Software Testing and Analysis,
pages 280–292, Jan. 1996.

[4] C. Banphawatthanarak, B. H. Krogh, and K. Butts. Sym-
bolic verification of executable control specifications. In
Proceedings of the ������� IEEE International Symposium on
Computer Aided Control System Design (jointly with the
1999 Conference on Control Applications), pages CACSD–
581–586, Kohala Coast - Island of Hawai’i, Hawai’i, Aug
1999.

[5] R. Bharadwaj and C. L. Heitmeyer. Model checking com-
plete requirements specifications using abstraction. Mem-
orandum Report NRL/MR/5540-97-7999, U.S. Naval Re-
search Laboratory, Washington, DC 20375, November 1997.

[6] J. Callahan, F. Schneider, and S. Easterbrook. Automated
software testing using model-checking. In Proceedings 1996
SPIN Workshop, Rutgers, NJ, August 1996. Also WVU
Technical Report #NASA-IVV-96-022.

[7] W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno,
D. Notkin, and J. D. Reese. Model checking large software
specifications. IEEE Transactions on Software Engineering,
24(7):498 – 520, July 1998.

[8] E. M. Clarke, Jr., E. A. Emerson, and A. P. Sistla. Automatic
verification of finite-state concurrent systems using tempo-
ral logic specifications. ACM Transactions on Programming
Languages and Systems, 8(2):244–263, April 1986.

[9] R. A. De Millo, R. J. Lipton, and F. G. Sayward. Hints
on test data selection: Help for the practicing programmer.
IEEE Computer, 11(4):34–41, April 1978.

[10] A. Engels, L. Feijs, and S. Mauw. Test generation for intelli-
gent networks using model checking. In E. Brinksma, editor,
Proceedings of the Third International Workshop on Tools
and Algorithms for the Construction and Analysis of Sys-
tems. (TACAS’97), volume 1217 of Lecture Notes in Com-
puter Science, pages 384–398. Springer-Verlag, April 1997.

[11] A. Gargantini and C. Heitmeyer. Using model checking to
generate tests from requirements specifications. In Proceed-
ings of the Joint 7th European Software Engineering Con-
ference and 7th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, Toulouse, France,
September 1999.

[12] J. B. Goodenough and S. L. Gerhart. Toward a theory of test
data selection. IEEE Transactions on Software Engineering,
1(2):156–173, June 1975.

[13] D. R. Kuhn. A technique for analyzing the effects of changes
in formal specifications. The Computer Journal, 35(6):574–
578, 1992.

[14] D. R. Kuhn. Fault classes and error detection in specification
based testing. ACM Transactions on Software Engineering
Methodology, 8(4), October 1999.

[15] K. L. McMillan. Symbolic Model Checking. Kluwer Aca-
demic Publishers, 1993.

[16] K.-C. Tai. Theory of fault-based predicate testing for com-
puter programs. IEEE Transactions on Software Engineer-
ing, 22(8):552–562, Aug. 1996.

[17] M. Woodward. Errors in algebraic specifications and an
experimental mutation testing tool. Software Engineering
Journal, pages 211–224, July 1993.

